

JPL Publication 09-6

Analysis of Single-Event Upset Rates in
Triple-Modular Redundancy Devices

Larry D. Edmonds

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

February 2009

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

© 2009 California Institute of Technology. Government sponsorship acknowledged.

 iii

Abstract
 Devices hardened against single-event upset (SEU) via triple-modular redundancy (TMR)
require unconventional methods for estimating system error rates in a space environment. We
cannot simply integrate a cross section versus linear energy transfer (LET) curve with an
environmental LET spectrum because “cross section” has a flux dependence. The strategy
proposed here is to experimentally measure (at a particle accelerator) system error rates as a
function of “raw” (i.e., with TMR disabled) bit-flip rates. The same experiment also measures
cross section versus LET for raw bit flips, and this information is used to calculate the raw rate in
a space environment. The calculated raw rate together with the measured system rate versus raw
rate curve provides an estimate of the system rate. Theoretical predictions of system rate versus
raw rate are provided here so that data obtained at flux levels practical for experimental work can
be extrapolated to the lower flux levels encountered in space.

 iv

 v

Contents
1. Introduction ... 1

2. Definition of the Problem Considered ... 1

3. Expected Number of System Errors During a Selected Cycle 3

4. Rates and Accumulated Numbers of Errors ... 5

5. Approximations ... 5
5.1 The Small-r Approximation ... 6
5.2 A More General Approximation .. 8

6. Some Questions that are Easily Answered via an Expansion in Moments 9
6.1 Comparison Between Counting Conventions .. 9
6.2 Uniform Versus Non-Uniform Group Sizes .. 10
6.3 TMR Versus Hamming Code .. 10

7. Interpretation of Test Data Obtained from a Particle Accelerator 11
7.1 Obtaining and Presenting Test Data .. 11
7.2 Using Theory to Augment Test Data ... 12
7.3 Examples.. 13

Appendix: Evaluation of the Derivatives in (13) .. 17

Figures
Figure 1. Bit Partitioning.. 2
Figure 2. Data and Fits for the BRSCRUB ... 14
Figure 3. Data and Fits for the Counters .. 15
Figure 4. Data and Fits for the Multipliers .. 16

 vi

 1

1. Introduction
 Various types of error detection and correction (EDAC) mechanisms have been used to
mitigate the impact of single-event upset (SEU) bit errors. The function of EDAC in general is
such that bit errors are normally not observable on a system level. However, the current forms of
EDAC have limitations, and bit errors can become observable under certain conditions. Different
types of EDAC differ in terms of what those conditions are. One type uses the Hamming code.
Another type is the subject of this report and is based on triple-modular redundancy (TMR).
Section 2 states the conditions that define a system error, which in turn defines the TMR problem
considered here. Section 3 derives the probability of a system error during a single cycle, and
Section 4 uses this result to derive an equation that calculates the system error rate. Section 5
derives an alternate form of the rate equation, which expresses the rate in terms of various
moments associated with a set of numbers of bits. This is useful for extracting information
regarding device architecture from accelerator test data, with the information consisting of
estimates of the moments. Section 6 shows how these moments can be used to quickly and easily
compare different architectures to determine which has the larger error rate. A method for
extracting information from accelerator test data is given in Section 7, which also includes
examples.

2. Definition of the Problem Considered
 The problem considered is defined by defining a system error, but it is necessary to first
describe the assumed device architecture. The device is partitioned into some number M of
groups of bits. Each group, in turn, is partitioned into three modules. Each module within a
common group contains the same number of bits, but this number can be different for different
groups. The bit partitioning is shown in Figure 1, which describes the logical bit mapping
although the physical locations of the bits may not be as shown. Each block in the figure is called
a block here and is identified by both a group and a module. The operational time is also
partitioned. It is partitioned into a set of time windows called cycles here. During any given
cycle, single-event bit errors can occur anywhere within the device. However, bit errors created
during one cycle are not present during the next cycle because one of the functions of the TMR is
to correct these errors from one cycle to the next; unless a system error (defined below) occurs,
in which case the resetting is done by external intervention. Therefore, we can consider
individual cycles as independent entities. For grammatical brevity, we will say that two or more
bit upsets are “simultaneous” if they were produced during the same cycle. One or more
simultaneous bit errors within a given block will be called a block error. The function of the
TMR is such that a block error is not relevant (does not produce a system error) if it is not
simultaneous with any other block error. An event that is relevant, and will be called a group
error, consists of simultaneous errors in two (or three) distinct blocks within the same group (i.e.,
distinct modules). For any given cycle, a system error is defined to be the occurrence of one or
more group errors. For example, one or more bit errors in Block (1,3) (see Fig. 1) is not a system
error by itself, but a system error occurs if this is accompanied by simultaneous bit errors (one or
more) in Block (1,1). This is one example of a Group 1 error and is also an example of a system
error. Similarly, a system error occurs if an error in Block (2,1) is simultaneous with an error in
Block (2,2). This is one example of a Group 2 error and is a second example of a system error. A

 2

third example of a system error is that in which both of the above events occur during the same
cycle. Note that this third example counts as one system error, i.e., there can be at most one
system error per cycle. The objective is to calculate the system error rate.

 Module 1 Module 2 Module 3

Group 1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
1N

o

o

o

Block (1,1)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
1N

o

o

o

Block (1,2)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
1N

o

o

o

Block (1,3)

Group 2

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
2N

o

o

o

Block (2,1)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
2N

o

o

o

Block (2,2)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
2N

o

o

o

Block (2,3)
. . . .

Group M

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
MN

o

o

o

Block (M,1)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
MN

o

o

o

Block (M,2)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

bits

.

.

.
MN

o

o

o

Block (M,3)

Figure 1. Bit Partitioning.
The bits are partitioned into M groups and three modules that intersect to form blocks. This bit
partitioning describes the logical bit mapping, but the physical locations of the bits may not be
as shown. The function of TMR is such that one or more bit errors in the same block is a block
error, two or more block errors in the same group is a group error, and one or more group
errors is a system error.

 3

 A good device layout ensures that multiple bit upsets produced by a single ion hit will not
produce multiple block errors within a common group, and such a layout is assumed in the
analysis that follows. A system error then requires that two or more ions each hit a different
block within a common group.

3. Expected Number of System Errors During a Selected Cycle
 Rates calculated in the next section will use results derived in this section. This section
calculates the expected (statistical average) number of system errors during one arbitrary but
fixed cycle. Because only one cycle is considered, the term “simultaneous” is not needed because
all bit errors considered are automatically simultaneous. Note that the number of system errors is
either zero or one, so the expected number of system errors is equal to the probability of a system
error. This probability is calculated from three steps. The first step calculates the probability of a
block error. The second step expresses the probability of a group error in terms of the probability
of a block error, and the third step expresses the probability of a system error in terms of the
probability of a group error.

 Before starting the first step, we define notation that will be used in all of the steps. An
outcome is the specification of the error state (yes or no) of every bit in the device. The outcome
set Ei,j (where i = 1,…,M and j=1,2,3) is the set of all outcomes in which there was a block error
in the (i,j) block, i.e., one or more bit errors in the (i,j) block. The outcome set Ei (where i =
1,…,M) is the set of all outcomes in which there was a group error in the ith group. Note that such
an event occurs if (and only if) there is either: a block error in the (i,1) block and in the (i,2)
block, or a block error in the(i,1) block and in the (i,3) block, or a block error in the(i,2) block
and in the (i,3) block. Using elementary set theory notation, this is written as

[] [] [].3,2,3,1,2,1, iiiiiii EEEEEEE IUIUI= (1)

Note that outcomes producing more than one of the above possibilities (i.e., that produce errors
in all three blocks in the ith group) are also included in (1). The outcome set E is the set of all
outcomes that produce a system error. Note that such an event occurs if (and only if) there is a
group error in at least one group so

.
1
U
M

i
iEE

=
= (2)

 We now calculate the probability of a block error. Consider the (i,j) block, which
contains Ni bits. The probability of an error in this block is denoted P(Ei,j) and is the probability
of one or more bit errors in a group of Ni bits. This probability is calculated from Poisson
statistics using

)exp(1)(, Ciji TrNEP −−= (3)

where TC is the cycle duration and r is the expected per-bit upset rate and is assumed to be the
same for all bits. The rate r is calculated from a measured per-bit cross section together with an
environmental model representing the environment of interest.

 We next calculate the probability of a group error in the ith group, which is denoted P(Ei).
This calculation is complicated by the fact that the square brackets on the right side of (1) are not

 4

mutually exclusive outcome sets, and they are also not statistically independent. For illustration,
suppose it is given that an outcome is in the first square bracket. Then it is also in the set Ei,1,
which increases the probability (compared to what the probability would be if the stated assertion
were not given) that this outcome will also be in the second square bracket, hence, the two
square brackets are not statistically independent. However, the three sets (Ei,1, Ei,2, and Ei,3) are
statistically independent because they refer to bit errors in distinct bit blocks that have no bits in
common. An equation that takes advantage of this fact can be derived by noting that the
probability function is an additive set function that satisfies

)()()()(BAPBPAPBAP IU −+=

for any two outcome sets A and B. A second application of this equation gives
)()()()()()()(CBPCAPBAPCPBPAPCBAP IIIUU −−−++=

.)(CBAP II+ (4)

If we now let A, B, and C be the three square brackets in (1) we obtain

.)(2)()()()(3,2,1,3,2,3,1,2,1, iiiiiiiiii EEEPEEPEEPEEPEP IIIII −++= (5)

The sets Ei,1, Ei,2, and Ei,3 are statistically independent so probabilities of intersections are
products of probabilities. Also, (3) gives P(Ei,1)=P(Ei,2)=P(Ei,3) so (5) becomes

.)(2)(3)(1,
3

1,
2

iii EPEPEP −= (6)

 We finally calculate the probability P(E) of a system error. Note that the sets inside the
union in (2) are statistically independent because they refer to bit errors in distinct bit groups that
have no bits in common. An equation that takes advantage of this fact can be derived by noting
that the probability function satisfies

*)(1)(APAP −=

where A is any outcome set and * denotes the compliment, i.e., A* is “not A”. We also have

.**
1

*

1
IU
M

i
i

M

i
i EEE

==
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

Using these results together with the fact that the sets E1*, E2*,…, EM* are statistically
independent, so probabilities of intersections are products of probabilities, gives

.)](1[1*)(1*1*)(1)(
111

∏∏
===

−−=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

M

i
i

M

i
i

M

i
i EPEPEPEPEP I (7)

Combining (3) with (6) and (7) gives

.)]3exp(2)2exp(3[1)(
1

∏
=

−−−−=
M

i
CiCi TrNTrNEP (8)

 5

4. Rates and Accumulated Numbers of Errors
 The previous section derived the expected number of system errors during a single cycle.
We now consider the expected number accumulated over a time period that contains multiple
cycles. “Accumulated number” is defined to mean that the expected number from one cycle is
added to that from another cycle. Therefore, we calculate the accumulated number over a given
time period by simply summing the numbers over all cycles contained in that time period. One
way to perform this summation is by taking the time integral of the system error rate. This rate is
the expected number of system errors from one cycle divided by the duration of the cycle TC.
The expected number is the same as the probability given by (8), so the system error rate,
denoted R, is given by

.)]3exp(2)2exp(3[11

1
∏
=

−−−−=
M

i
CiCi

CC
TrNTrN

TT
R (9)

If the environment changes with time, so the bit error rate r changes with time, then the system
error rate R will have a time dependence and is integrated in time to obtain the expected number
of system errors over a given time period. If R is constant, we simply multiply by time to obtain
the number of errors. Strictly speaking, R is not an instantaneous rate. It is the rate averaged over
the cycle time TC. If this cycle time is long enough for the environment to change significantly
during a cycle, then the bit rate r that should be used in (9) is the bit rate averaged over the cycle
time. If the cycle time is short compared to other time scales of interest (including time scales
associated with environmental changes), then r and R can both be regarded as instantaneous
rates.

5. Approximations
 This section derives two approximations for (9), with one (the simplest) valid when r is
sufficiently small, and the other (slightly more complex) valid for arbitrary r. Note that (9) is
exact for arbitrary r, so it is reasonable to ask why approximations are needed. There are three
reasons:

(a) Required Numerical Precision: When r is small, the right side of (9) subtracts nearly

equal numbers, which is a numerical problem. The exact equation when evaluated with
finite arithmetic precision can actually be less accurate than an approximation
evaluated with the same arithmetic precision.

(b) Simplicity Provides Insight: To determine the exact dependence that R has on r, it is
necessary to assign numerical values to each of the parameters N1, N2, …, NM.
However, the approximations derived below will show that this dependence is most
strongly controlled by just a few “moments” associated with these parameters (two
examples of moments are the mean and the root-mean-square). Simple approximations
containing a few moments provide insight that can easily answer questions whose
answers are not at all obvious from a casual inspection of (9). Examples of such
questions are given in the next section.

 6

(c) Curve Fitting: In some practical applications, the parameters N1, N2, …, NM are not
known inputs. Instead, the available information consists of measurements of R as a
function of r, performed at a particle accelerator in which errors are counted at
different flux levels, with each flux level producing a different value for r (i.e., each
flux level produces one data point in a plot of R versus r). Curve fitting is needed to
extract parameters from such data. Unfortunately, this method is not able to extract a
large number of parameters from a smaller number of data points, even in a
hypothetical experiment that produces no experimental scatter. However, by
recognizing that the dependence of R on r is most strongly controlled by a few
moments, discussed in (b) above, and by using these moments as the fitting parameters,
it is possible to extract these from the data. This is discussed in more detail in Section
7.

5.1 The Small-r Approximation
 To obtain a small-r approximation for the rate R, we treat r as a variable and write (9) as

)(11
C

CC
Trf

TT
R −= (10)

where the function f is defined by

.)]3exp(2)2exp(3[)(
1

∏
=

−−−≡
M

i
ii xNxNxf (11)

A series expansion about the point r = 0 gives

∑
∞

=
=

0

)()()0(
!

1)(
n

n
C

n
C Trf

n
Trf (12)

where we define

,...2,1,)()()(=≡ n
dx

xfdxf n

n
n

.)()()0(xfxf ≡

Substituting (12) into (10) while using f(0) = 1 gives

.)()0(
!

11

1

)(∑
∞

=
−=

n

n
C

n

C
Trf

nT
R (13)

 The next step is to calculate the derivatives of f appearing in (13). Differentiating (11)
becomes increasingly laborious with each higher derivative, but a systematic method that
reduces this labor is derived in the appendix. The first few derivatives are calculated in the
appendix and substituting those results into (13) gives

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−= ...)(

2
9

4
37)(5)(3 4

44
4

4
23

3
2

2 CCC
C

TrMTrTr
T
MR M

M

M
MM (14)

 7

where the moments M2, M3, and M4 are defined by

.1,1,1
4/1

1

4
4

3/1

1

3
3

2/1

1

2
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡ ∑∑∑

===

M

i
i

M

i
i

M

i
i N

M
N

M
N

M
MMM (15a)

The first moment M1 defined by

∑
=

≡
M

i
iN

M 1
1

1
M (15b)

does not appear in (14) but is listed here for later discussions.

 A small-r approximation is obtained by retaining only the first few terms in (14). In this
approximation, it is not necessary to assign numerical values to each of the parameters N1, N2,
…, NM. It is sufficient to assign values to the first few moments, which become the new
parameters. However, these new parameters are not entirely independent because they are
constrained by inequalities. The Hölder inequality for sums (a generalization of the Cauchy-
Schwarz inequality) can be used, together with (15), to show that

.4321 MMMM ≤≤≤ (16)

The moments are all equal if the group sizes are uniform (i.e., if N1 = N2 =…= NM), so the
amount by which the moments differ provides some measure of the lack of uniformity, or spread,
of the group sizes. This measure can be made more explicit by comparing, for example, M2 to
M3. It is easy to show from (15) that

.]))([(
1

1

2
222

13
2

3
3 ∑

=
−+=−

M

i
ii NN

M
MMMM (17)

Interpreting the right side of (17) as a measure of the spread in the set N1, …, NM, the left side is
an alternate expression for this measure. A second measure of the spread is obtained from M2 if
we know the total number of bits in the device and the total number of groups. Given this
information, we also know M1 from (15b). It is easy to show that

.)(1

1

2
1

2
1

2
2 ∑

=
−=−

M

i
iN

M
MMM (19)

Interpreting the right side of (19) as a measure of the spread in the set N1, …, NM, the left side is
an alternate expression for this measure. A third measure of the spread, which is redundant with
the previous two, is obtained by comparing M1 to M3 via

.]))(2[(1

1

2
11

3
1

3
3 ∑

=
−+=−

M

i
ii NN

M
MMMM (20)

 The lowest-order small-r approximation retains only the first term in (14) so only the one
moment M2 appears. The approximation is

).-(small)(3 2
2 rrTMR C M≈ (21)

 8

5.2 A More General Approximation
 This section derives an approximation that is slightly more complex than (21) but has the
advantage of being useful for arbitrary r. Note that there are two possible conditions that might
occur. One possibility is that M1rTC << 1, and the other possibility is that M1rTC is on the order
of 1 or larger. Only the first possibility requires careful attention. The reason is as follows.
Regarding M1 as an estimate of a typical block size, the condition M1rTC ∼ 1 (or larger) states
that most of the blocks will contain an error during any given cycle. With group numbers M
typically in the hundreds or thousands, this condition makes it overwhelmingly probable that
there will be one or more group errors (i.e., a system error) during any given cycle, so the system
error rate R is one error per cycle, i.e., R is very nearly equal to 1/TC. Using the notation in (10),
the condition is written as

larger.or 1~ if 1)(1 CC TrTrf M<< (22)

Any approximation for f (even a very crude approximation) that is consistent with (22) will
produce the correct R for the condition stated in (22). An approximation for f that is consistent
with (22) is required to be accurate only for those conditions in which f is not negligible
compared to 1, i.e., accuracy is needed only when M1rTC << 1. However, if we focus our
attention to those conditions where accuracy is most needed, i.e., small-r conditions, it might
appear that this analysis is just a repeat of the derivation of the small-r approximation (21). The
approach used here differs from that used to derive (21) in that the approximation for f will be
constructed to be consistent with (22). In contrast, (21) is not consistent with (22). Furthermore,
when approximating various quantities with a partial power series in r, enough terms will be
included so that accuracy is maintained as r increases up to the point where (22) applies. With
accuracy available up to this point, and not needed beyond this point, the final approximation for
R will be accurate for all r.

 The approximation is derived by starting with an approximation for the terms in (11). The
approximation used here is

)
4

3753exp()3exp(2)2exp(3 443322 xNxNxNxNxN iiiii −+−≈−−− (23)

where x = rTC. This approximation was selected partly for convenience and partly because it has
two essential properties (verifications are exercises for the reader). The first property is that the
error is a high-order quantity (fifth order in x to be precise). The second property is that the right
side, like the left side, is strictly decreasing in x and approaches zero at large x. The first property
maintains accuracy as x increases up to the point where (22) begins to apply, while the second
property makes the approximation consistent with (22) so accuracy is not needed for larger x.
Substituting (23) into (11) gives

⎥⎦
⎤

⎢⎣
⎡ −+−≈ 4

4
3

3
2

2)(
4

37)(5)(3exp)(xMxMxMxf MMM

and substituting this into (10) gives

.)(
4

37)(5)(3exp11 4
4

3
3

2
2

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+−−≈ CCC

C
TrMTrMTrM

T
R MMM (24)

 9

Note that (24) has the desirable property of containing only a few moments instead of the
complete set of parameters N1, …, NM. Also, a numerical comparison for a specific example (in
which Ni = 200 for each i, M = 48,000, and TC = 5 ms) found that the approximation (24) agrees
with the exact equation (9) to 5 or 6 digits (or better) for all r > 0; when adequate arithmetic
precision is used to evaluate both equations. However, (24) has the undesirable property of
subtracting nearly equal numbers (the two terms in the curly brackets) when r is small. This is a
numerical problem when arithmetic precision is limited. A solution to this problem is to note that
(24), when evaluated with adequate arithmetic precision, is virtually indistinguishable from the
small-r approximation (21) when the latter approximation predicts RTC < 10–5. The final
approximation then becomes

⎪⎩

⎪
⎨
⎧ <≈

−

otherwise. (24) of sideright
10)(3 and limited isprecision numerical if)(3 52

2
2

2 CC TrMrTMR MM
 (25)

6. Some Questions that are Easily Answered
via an Expansion in Moments

 Suppose all device parameters are known so we have a choice between (9) and (14).
However, there are certain questions whose answers are much more obvious from (14) than from
(9). Some examples are given below. To be more specific, (14) will be used to compare error
rates produced by different device architectures. It will be seen that (14) easily derives
predictions that are not at all obvious from a casual inspection of (9).

6.1 Comparison Between Counting Conventions
 The first comparison considered compares different counting conventions. Recall that
simultaneous errors in multiple groups are being counted as one system error. An alternate
counting convention counts multiple group errors as multiple system errors, so there can be more
than one system error in a cycle. The latter convention is less useful to a system designer but
leads to a simpler equation for the error rate. Note that the two conventions will produce the
same system error rates in the small-r limit (because the probability of two or more group errors
becomes much smaller than the probability of one group error), but it is interesting to determine
the rates at which the two conventions begin to depart from each other. The system error rate for
the alternate (multiple error) counting convention is denoted R* and is the sum of group error
rates summed over all groups. The error rate for the ith group is denoted Ri and is given by

)(1
i

C
i EP

T
R =

so R* is given by

.)(1*
1
∑
=

=
M

i
i

C
EP

T
R

Combining this with (3) and (6) and expressing each exponential function in (3) as a power
series gives

 10

....)(
4

19)(5)(3* 4
4

3
3

2
2

⎭
⎬
⎫

⎩
⎨
⎧ ++−= CCC

C
TrTrTr

T
MR MMM (26)

Note that the two rates in (14) and (26) differ only in the fourth and higher power terms. The
conclusion is that the two rates are indistinguishable until r is large enough for the fourth or
higher power terms to become significant contributions.

6.2 Uniform Versus Non-Uniform Group Sizes
 The next comparison investigates the benefit of using uniform group sizes. Suppose a
device designer is constrained to use a fixed number of bits distributed among a fixed number of
groups, but there is flexibility in the sizes of the groups subject to those constraints, i.e., the
groups can be of equal size, or bits can be taken from one group and put into another so that
some groups are larger than others. The objective is to compare system error rates for the
different possibilities in order to determine the optimum group construction. We will answer this
question when r is sufficiently small so that (14) reduces to (21), and using (19) gives

.)(13 2

1

2
1

2
1 rN

M
TMR

M

i
iC ⎥

⎦

⎤
⎢
⎣

⎡
−+= ∑

=
MM

The mean number of bits M1 is the same for all cases being compared, so different cases differ in
the summation term. The construction that produces the smallest R is the one in which the
summation term vanishes, i.e., all groups are of the same size. This means that if we start with
equal size groups and then take bits out of one group (making it smaller, which tends to decrease
R) and put them into another group (making it larger, which tends to increase R), the tendency
for R to increase outweighs the tendency to decrease. Note that this conclusion is not at all
obvious from a casual inspection of (9).

6.3 TMR Versus Hamming Code
 The last comparison is between TMR and the Hamming code. Again we consider the
small-r limit so the rate for the TMR arrangement is given by (21). We also assume that the
TMR arrangement uses uniform group sizes so N1 = N2 =… = NM = NB/B, where the notation NB/B
is a reminder that this is the number of bits per block. Note that M2 = NB/B, so the rate for the
TMR arrangement becomes

[] .3 22
/ rTNMR CBBTMR =

An earlier analysis found that the system error rate for the Hamming code device, in the same
small-r limit, is given by

[] 2
//2

1)1(rTNNNR CWBWBWHamming −=

where NW is the number of EDAC words in the device and NB/W is the number of bits per word
(including check bits). To make the comparison fair, we assume that both devices have the same
total number of bits, denoted NTotal. For the TMR device the total number of bits is given by

BBTotal NMN /3=

 11

and for the Hamming code device it is given by

WWBTotal NNN /=

so the ratio of the rates is given by

[]
[] both).for (same

1
2

/

/
Total

WB

BB

Hamming

TMR N
N

N
R

R
−

=

The number of bits per block in the TMR device is one-third the number of bits per group,
denoted NB/G, so an alternate equation is

[]
[] both).for (same

13
2

/

/
Total

WB

GB

Hamming

TMR N
N

N
R

R
−

=

The TMR device will have the smaller rate if the groups are small enough (and correspondingly
numerous to maintain the total number of bits) to make the right side less than unity.

7. Interpretation of Test Data Obtained from a Particle Accelerator
 If all of the device parameters (r, TC, M, N1, …, NM) are given inputs, the system error
rate R can be calculated directly from (9). However, suppose that these parameters are not all
given. Instead, the given information consists of test data (measured error rates) produced at a
particle accelerator. One possible goal is to extract information regarding device architecture
from these data. Another possible goal is to estimate the system error rate in a given space
environment. In either case, the method used to obtain and present test data is the same, and is
discussed in Section 7.1. The role that the theory plays in data interpretation is discussed in
Section 7.2, and some example applications are given in Section 7.3.

7.1 Obtaining and Presenting Test Data
 Measuring single-event effect cross sections is a familiar procedure, so we begin the
discussion by using this language. There are two sets of tests, one with TMR turned off, and the
other with TMR turned on. With TMR turned off, the first set of tests vary the ion linear energy
transfer (LET) L and measures the per-bit cross section, denoted σper-bit(L), for each LET. For the
second set of tests, TMR is turned on and a convenient LET is selected, where “convenient”
means that adequate counting statistics can be obtained from flux levels available at the
accelerator and using reasonable beam run times (tests become very expensive when beam run
times are more than a few minutes per run). In this set of tests, the flux f is varied from one run to
the next. For each run, the system-error cross section (per device and defined in the usual way,
i.e., counts divided by fluence), denoted σSYS(f), is measured and the flux is recorded. This
produces a plot of the system-error cross section as a function of flux. This plot is then converted
into a plot of R versus r by multiplying the vertical coordinate σSYS(f) by f to obtain R, and by
multiplying the horizontal coordinate f by σper-bit(L) (where L is the LET used during the second
set of tests) to obtain r. The final result is an experimental determination of R as a function of r.

 12

7.2 Using Theory to Augment Test Data
 With an experimental determination of R versus r available, it is reasonable to ask what
the purpose is of all of the theory derived in this paper. It would appear that we could use
standard rate calculation methods to estimate r for a given space environment, using the
experimentally measured cross section versus LET curve for raw bit flips, and then combine this
estimate with the experimentally measured plot of R versus r to obtain an estimate of the system
error rate R in that environment. It might appear that all required information can be obtained
experimentally. There are several reasons why the theory is useful:

(a) Test Data Extrapolation: Test data extrapolation is probably the most important
motivation for the theory because this will have to be done each time a rate estimate is
needed in a space environment. Additional discussion below will explain why there are
practical constraints regarding the flux levels that can be used during a particle-
accelerator test, but for now it is enough to know that test flux levels will be much
larger than flux levels encountered in space environments, i.e., r values produced in a
test are much larger than produced by a space environment. The R versus r plot will
have to be extrapolated to the smaller (by multiple decades) values of r produced in
space. A theoretical model is needed for a multiple-decade extrapolation. There is an
important caveat. An extrapolation cannot be trusted unless it is known (e.g., from
electrical tests) that the device has the expected functionality. Otherwise, the device
might belong to item (b) below.

(b) Device Verification: It is not always clear whether a real device has met expectations.
Not all device elements are triplicated, i.e., not all elements are protected by TMR.
Perhaps some portion of the device, not protected by TMR, will make the dominant
contribution to the error rate. Or, perhaps a portion that was thought to be protected by
TMR really isn’t due to a design or fabrication flaw. A third possibility is that a bad
device layout results in a system error when multiple-bit upsets are produced by a
single ion hit. By comparing an experimentally measured R versus r plot to the ideal
(i.e., theoretical) prediction, a device designer or manufacturer can determine whether
the ideal limit has been reached.

(c) Device Parameter Extraction: One possible goal is to extract information regarding
device architecture (e.g., the numbers of bits in the groups). Some information (e.g.,
the root-mean-square) can be obtained by fitting theoretically derived curves to the test
data.

(d) Dealing with Scatter: Cross-section data sometimes contain enough scatter to obscure
the underlying curve that the data would conform to if there were no scatter. When
attempting to fit such data with a curve, but without any theoretical guidance, it is not
clear whether the curve should be a straight line in a log-log plot, a straight line in a
log-linear plot, or something else. Theoretical guidance can help to determine the type
of curve that should be used.

 Item (a) above requires additional discussion. It might appear that flux levels and/or ion
LET can be varied as needed to make r as small as desired or as large as desired, so an
experimental plot of R versus r could be made to extend from the small-r regime to the large-r
regime. However, a practical consideration limits the plotted range so that the regime that is
sampled is more strongly controlled by TC than by user preference. This practical consideration

 13

is the need to obtain adequate counting statistics while avoiding the expense associated with
excessive beam time. To obtain adequate counting statistics, a beam run should produce at least
several tens of system errors. Let us arbitrarily select 20 system errors as a base-line number. To
avoid excessive beam time, the test run time should be relatively short. Let us arbitrarily select
100 seconds as a base-line number. To produce these base-line numbers, the flux must be
adjusted to be whatever is needed to produce a system error rate R that is 0.2/s. There is some
flexibility (e.g., the run time could be an hour), but a typical value of R will be within one or two
orders of magnitude of this base-line number. However, this value of R might belong to the
small-r regime, or it might belong to the large-r regime, depending on how this value compares
to 1/TC (because the small-r regime applies when R << 1/TC, while the large-r regime applies
when R ∼ 1/TC). Because the user has only limited control over R, the comparison between R and
1/TC is most strongly controlled by TC. For example, if TC is one millisecond, the experimental
data will probably be sampling the small-r regime. If TC is several seconds or larger, the
experimental data will probably be sampling the large-r regime. For any case in which the data
do not sample both regimes, theory is needed to extrapolate the data from one regime into the
other.

7.3 Examples
 A Xilinx field-programmable gate array (FPGA) was configured in several ways,
identified here as “BRSCRUB”, “Multipliers”, and “Counters”. Accelerator test data were
obtained by Carl Carmichael (Xilinx), Gary Swift (JPL), Greg Allen (JPL), and Sana Rezgui
(Xilinx), using the method in Section 7.1. Data interpretation (e.g., distinguishing TMR errors
from other types of errors, such as single-event functionality interrupts (SEFIs)) was performed
by Jeffrey George (Aerospace), Gary Swift (JPL), Carl Carmichael (Xilinx), and Tilan Langley
(JPL). Test data presented in the format discussed in Section 7.1 are shown as the points in
Figures 2 through 4. The curves are discussed below.

 To construct fits to the data, it is desirable to obtain as much device-related information
as possible in order to minimize the number of device parameters that must be treated as
adjustable fitting parameters. The same individuals that participated in data interpretation have
provided the following supplemental information:

• For the BRSCRUB, the cycle time (TC) is 2 ms, and the number of groups (M) is 48,000.
Also, the group sizes are uniform, so M2 = M3 = M4. This leaves only one adjustable
fitting parameter M2.

• For the Counters, the cycle time (TC) is 0.266 s, and the number of groups (M) is 8,224.
Also, the group sizes are nearly uniform in that 8,192 of the groups are of the same size,
although the remaining 32 groups might be of different sizes. It is assumed that the non-
uniformity produced by the latter groups is not large enough to invalidate the
approximation M2 ≈ M3 ≈ M4, so there is only one adjustable fitting parameter M2.

• For the Multipliers, the cycle time (TC) is 0.266 s, and the number of groups (M) is 900.
Also, the group sizes are nearly uniform in that 864 of the groups are of the same size,
although the remaining 36 groups might be of different sizes. It is assumed that the non-
uniformity produced by the latter groups is not large enough to invalidate the
approximation M2 ≈ M3 ≈ M4, so there is only one adjustable fitting parameter M2.

 14

 In each case there is only one adjustable fitting parameter M2. Assigning values to this
parameter to obtain what appears to be a best fit to the data produces the curves in Figures 2
through 4 (parameters are listed in the figure captions). In each case, the curve produced by the
general approximation (24) is indistinguishable (error is less than the line thickness for all r)
from the curve produced by the exact equation (9). Although incidental, it is interesting to note
that the small-r approximation agrees well with the exact equation until R is within an order of
magnitude of its limiting value.

 Note that a suitable choice of fitting parameters gives good agreement (within
experimental scatter) between the fit and data for the BRSCRUB in Figure 2. In contrast, the
three points for the Multipliers in Figure 4 suggest that a different curve may apply. This might
be an illusion produced by experimental scatter (with only three points we cannot distinguish
scatter from a systematic trend). Another possibility is a flaw in the device fabrication or design
such as discussed in Item (b) in Section 7.2. Additional data points (enough so that we can
distinguish scatter from a systematic trend) would be needed to resolve this issue, so results for
the Multipliers are inconclusive at this time. However, the comparison between data and theory
does at least alert us to the fact that the Multipliers should be investigated for possible design or
fabrication flaws.

BRSCRUB

r (bit errors/bit-second)
1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

R
 (

sy
st

em
 e

rr
or

s/
se

co
nd

)

0.001

0.01

0.1

1

10

100

1000 data
general approximation
small-r form extrapolated

Figure 2. Data and Fits for the BRSCRUB
The fits used TC = 2 ms, M = 48000, and M2 = M3 = M4 = 250. Note that TC and M were given,
and it was given that M2 = M3 = M4, so M2 is the only adjustable fitting parameter. The curve
produced by the general approximation (24) is indistinguishable (error is less than the line
thickness for all r) from the curve produced by the exact equation (9). Also, the small-r
approximation agrees well with the exact equation until R is within an order of magnitude of its
limiting value.

 15

Counters

r (bit errors/bit-second)

1e-7 1e-6 1e-5 1e-4 1e-3

R
 (

sy
st

em
 e

rr
or

s/
se

co
nd

)

0.0001

0.001

0.01

0.1

1

10

data
general approximation
small-r form extrapolated

Figure 3. Data and Fits for the Counters
The fits used TC = 0.266 s, M = 8224, and M2 = M3 = M4 = 200. Note that TC and M were given,
and it was assumed that M2 ≈ M3 ≈ M4, so M2 is the only adjustable fitting parameter. The curve
produced by the general approximation (24) is indistinguishable (error is less than the line
thickness for all r) from the curve produced by the exact equation (9). Also, the small-r
approximation agrees well with the exact equation until R is within an order of magnitude of its
limiting value.

 16

Multipliers

r (bit errors/bit-second)

1e-6 1e-5 1e-4 1e-3

R
 (

sy
st

em
 e

rr
or

s/
se

co
nd

)

0.0001

0.001

0.01

0.1

1

10

data
general approximation
small-r form extrapolated

Figure 4. Data and Fits for the Multipliers
The fits used TC = 0.266 s, M = 900, and M2 = M3 = M4 = 200. Note that TC and M were given,
and it was assumed that M2 ≈ M3 ≈ M4, so M2 is the only adjustable fitting parameter. The curve
produced by the general approximation (24) is indistinguishable (error is less than the line
thickness for all r) from the curve produced by the exact equation (9). Also, the small-r
approximation agrees well with the exact equation until R is within an order of magnitude of its
limiting value.

 17

Appendix: Evaluation of the Derivatives in (13)
 A systematic method for evaluating the derivatives in (13) is obtained by first defining fi
by

)3exp(2)2exp(3)(xNxNxf iii −−−≡ (A1)

so (11) becomes

.)()(
1

∏
=

=
M

i
i xfxf (A2)

Now define g and gi by

))(ln()()),(ln()(xfxgxfxg ii ≡≡ (A3)

so that (A2) becomes

.)()(
1
∑
=

=
M

i
i xgxg (A4)

It can be shown by induction that if two functions f and g are related by (A3), then the
derivatives are related by

...,2,1,
!)(!)1(

)()(!)1()(
1

)()(
)(=

−−
−= ∑

=

−
n

ini
xgxfnxf

n

i

iin
n (A5)

which is a recursion formula that solves for the highest derivative of f in terms of derivatives of g
and lower derivatives of f. A similar equation relates derivatives of fi to derivatives of gi, but it is
convenient to write this equation so that the highest derivative of gi appears on the left side. The
equation is

)(
)()(

)1(
)1(

xf
xfxg

i

i
i = (A6a)

...,3,2,
!)(!)1(

)()(
)(
!)1(

)(
)()(

1

1

)()()(
)(=

−−
−

−= ∑
−

=

−
n

jnj
xgxf

xf
n

xf
xfxg

n

j

j
i

jn
i

ii

n
in

i (A6b)

There are now enough equations to calculate all derivatives when the derivatives of fi are given
inputs. For the case considered here, fi is given by (A1) so the derivatives are

...,1,0,)3exp()3(2)2exp()2(3)()(=−−−−−= nxNNxNNxf i
n

ii
n

i
n

i (A7)

 18

The advantage of this method is that all other derivatives are calculated from the derivatives in
(A7) using algebraic (as opposed to differential) operations. This means that the above
derivatives can be evaluated at x = 0 (which greatly simplifies the expressions) in order to obtain
the other derivatives also evaluated at x = 0. From here on we shorten the notation by omitting
the argument x with the understanding that all functions from this point on are evaluated at x = 0.
Evaluating (A7) at x = 0 and explicitly listing the first five terms gives

.114,30,6,0,1 4)4(3)3(2)2()1()0(
iiiiiiiii NfNfNffff −==−==== (A8)

Explicitly listing the first few equations in (A6) while using the fact that fi = 1 gives

⎪
⎪
⎭

⎪⎪
⎬

⎫

−−−=

−−=

−==

.33

2

,

)3()1()2()2()1()3()4()4(

)2()1()1()2()3()3(

)1()1()2()2()1()1(

iiiiiiii

iiiiii

iiiiii

gfgfgffg

gfgffg

gffgfg

 (A9)

Substituting (A8) into (A9) solves for the derivatives of gi. Putting these results into (A4) gives

.222,30,6,0
1

4)4(

1

3)3(

1

2)2()1(∑∑∑
===

−==−==
M

i
i

M

i
i

M

i
i NgNgNgg (A10)

Explicitly listing the first few equations in (A5) while using the fact that f = 1 gives

⎪
⎪
⎭

⎪⎪
⎬

⎫

+++=

++=

+==

.33

2

,

)4()3()1()2()2()1()3()4(

)3()2()1()1()2()3(

)2()1()1()2()1()1(

ggfgfgff

ggfgff

ggffgf

 (A11)

Substituting (A10) into (A11) solves for the derivatives of f evaluated at x = 0, and the results are

∑∑
==

=−==
M

i
i

M

i
i NfNff

1

3)3(

1

2)2()1(30,6,0

.37186
1

4
2

1

2)4(

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎥
⎦

⎤
⎢
⎣

⎡
= ∑∑

==

M

i
i

M

i
i NNf

